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1. Bounding the number of twin primes

We recall that we have given a bound for the following sieving problem.
Given:

• A ⊂ Z with #A = X;
• P a set of primes and

P (z) =
∏
p≤z
p∈P

p;

• We defined the set of elements of A not divisible by all primes p ∈ P,
p ≤ z:

S(A,P, z) = #{n ∈ A : gcd(n, P (z)) = 1}

and wish to estimate S(A,P, z).
For each square-free d such that p|d⇒ p ∈ P define

Ad = {n ∈ A : d|n}.

and assume

#Ad =
X

f(d)
+Rd

where f is a multiplicative function. We proved:

Theorem 1.1. In the notation as above, we have

S(A,P, z) ≤ X

S(z)
+R(z),

where

S(z) =
∑
d≤z

d|P (z)

µ2(d)

(µ ∗ f)(d)
, R(z) =

∑
d1,d2≤z

d1,d2|P (z)

|R[d1,d2]| .
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1.1. Twin primes. We will now apply the above to the problem of giving
an upper bound to the number π2(X) of twin primes up to X. To do so, we
take

A = {m(m+ 2) : m ≤ X}
and P to be all primes. Then

π2(X)− π2(z) ≤ S(A,P, z)

and it suffices to give an upper bound for S(A,P, z). By Selberg’s sieve,

S(A,P, z) ≤ X

S(z)
+R(z)

and we need a lower bound for S and an upper bound for R. We will show
that S(z) � (log z)2 and R(z) � (z log z)2, and taking say z = X1/4 we
find

X

S(z)
+R(z)� X

(log z)2
+ (z log z)2 � X

(logX)2

Thus we find

Theorem 1.2.

π2(X)� X

(logX)2

We start by finding the multiplicative function f(d): In previous classes
we saw

Lemma 1.3. Let

ρ(d) = #{c mod d : c(c+ 2) = 0 mod d}

Then

#Ad = X
ρ(d)

d
+O(ρ(d))

Hence f(d) = d/ρ(d) and Rd = ρ(d). We can compute that for p prime,

ρ(p) =

{
1, p = 2

2, p 6= 2

1.2. An upper bound for R. We claim that

(1) R(z)� (z log z)2

We have Rd = ρ(d) ≤ 2ω(d) for d squarefree (where ω(d) denotes the number
of distinct prime factors of d), and hence

R(z) =
∑

d1,d2≤z
squarefree

ρ([d1, d2]) ≤
∑

d1,d2≤z
squarefree

2ω([d1,d2])

Now

ω([d1, d2]) ≤ ω(d1d2) ≤ ω(d1) + ω(d2)
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and therefore

R(z) ≤
∑

d1,d2≤z
squarefree

2ω(d1)+ω(d2) =
( ∑

d≤z
squarefree

2ω(d)
)2

For d squarefree, 2ω(d) = τ(d) and therefore∑
d≤z

squarefree

2ω(d) ≤
∑
n≤z

τ(n)� z log z

which gives R(z)� (z log z)2 as claimed.

1.3. A lower bound for S. To give a lower for for S(z), we replace S(z)

by a somewhat more convenient function. Let f̃ be the completely multi-
plicative function whose values at primes is f̃(p) = f(p), that is

f̃(n) =
∏
p

f̃(p)kp , n =
∏

pkp

Lemma 1.4.

S(z) =
∑
d≤z

d|P (z)

1

(f ∗ µ)(d)
≥

∑
n≤z

p|n⇒p∈P

1

f̃(n)

Proof. We have for d squarefree

(f ∗ µ)(d) =
∏
p|d

(f(p)− 1)

and hence

1

(f ∗ µ)(d)
=

1/f(p)

1− 1/f(p)
=
∑
k≥1

1

f(p)k
=
∏
p|d

∑
k≥1

1

f(p)k
=

∑
n∈N (d)

1

f̃(n)

where
N (d) = {n : p | n⇔ p | d} .

Note that the sets of N (d) are disjoint for different squarefree d’s and that
every integer d ≤ z belongs to exactly one of the sets N (d) (d squarefree),
namely for d = rad(n) :=

∏
p|n p.

We have

S(z) =
∑
d≤z

d|P (z)

1

(f ∗ µ)(d)
=
∑
d≤z

d|P (z)

∑
n∈N (d)

1

f̃(n)

Since f̃ > 0, we can drop all terms with n > z without increasing the result,
retaining only those n ≤ z which are divisible only by primes from some
d | P (z), that is that are divisible only by primes from P. Hence

S(z) ≥
∑
n≤z

p|n⇒p∈P

1

f̃(n)
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as claimed. �

Proposition 1.5.
S(z)� (log z)2

Proof. We use Lemma 1.4 to obtain

S(z) ≥
∑
n≤z

ρ̃(n)

n

Here
ρ̃(n) =

∏
p|n

ρ(p)kp =
∏
p|n
p 6=2

2kp = 2Ωodd(n)

where Ωodd(n) is the number of odd prime powers dividing n. We have

2Ωodd(n) ≥ τodd(n)

where
τodd(n) =

∑
d|n

d odd

1

is the number of odd divisors of n. Indeed, since both functions are mul-
tiplicative, it suffices to check this for n = pk a prime power, and then for
p 6= 2 we check that

2Ωodd(pk) = 2k ≥ k + 1 = τodd(pk)

while for p = 2 both sides are 1.
Hence we find

S(z) ≥
∑
n≤z

τodd(n)

n

Lemma 1.6.

Dodd(x) :=
∑
n≤x

τodd(n) =
1

2
x log x+O(x)

Proof. We have

Dodd(x) =
∑
n≤x

τodd(n) =
∑
n≤x

∑
d|n

d odd

1

=
∑
d≤x
d odd

∑
n≤x
d|n

1 =
∑
d≤x
d odd

x

d
+O(1) = x

∑
d≤x
d odd

1

d
+O(x) .

Now ∑
d≤x
d odd

1

d
=
∑
d≤x

1

d
−
∑
c≤x/2

1

2c

= log x+O(1)− 1

2
log

x

2
+O(1) =

1

2
log x+O(1)
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and therefore∑
n≤x

τodd(n) = x
(1

2
log x+O(1)

)
+O(x) =

1

2
x log x+O(x)

as claimed. �

Now to show that S(z) ≥ 1
4(log z)2 +O(log z): We saw that

S(z) ≥
∑
n≤z

τodd(n)

n

Using summation by parts∑
n≤z

τodd(n)

n
=
Dodd(z)

z
+

∫ z

1

Dodd(t)

t2
dt

= O(log z) +

∫ z

1

1
2 t log t+O(t)

t2
dt

=
1

4
(log z)2 +O(log z)

Hence we find S(z) ≥ 1
4(log z)2 +O(log z) as claimed. �


